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Absrrucr-In this paper we investigate the capacity of networks with 
a  regular  structure  operating tlnder the  slotted ALOHA access  proto- 
col.  We  first  consider, circular (loop)  and linear  (bus)  networks  and 
then proceed to two-dimensional  networks.  For  one-dimensional  net- 
works we find  that the capacity is basically  independent of the net- 
work  average degree  and  is  almost  constant  with  respect to network 
size. For two-dimensional  networks we find  that  the  capacity  grows in 
proportion  to the square root of the  number of nodes  in  the network 
provided that the average  degree is kept  small.  Furthermore, we find 
that  reducing the average  degree  (with  certain  connectivity  restric- 
tions)  allows a  higher  throughput to be achieved. We also  investigate 
some of the  peculiarities of routing in these  networks. 

I.  INTRODUCTION . 

I N some applications it is not possible (or economically 
feasible) to construct conventional communication net- 

works using  wire-based transmission facilities. As a result of 
this  many new technologies have been explored. The ALOHA 
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system at  the University  of  Hawaii [l] , [9] is such an innova- 
tive network using a broadcast radid channel to interconnect 
the various  campuses of the University which are located on 
different islands. Recent ongoing studies (of which this paper 
is part),  supported  by  the Advanced  Research Projects Agency 
of the Department of Defense  (DARPA),  have extended these 
ideas and developed the concept of a packet radio network 
(called the  PRnet), wherein-packets may take multiple hop 
paths in order to reach their destination [5] , [6] , [12] . Any 
node in the  network can act as a source or destination for 
traffic  in  this  network. 

The  simplest random access scheme is “pure ALOHA,” 
wherein any  node having a packet ready for transmission does 
so. Of course, collisions occur. These are resolved by  the  node 
retransmitting the packet at some (randomly chosen) later 
time, if no positive acknowledgment is  received. It is necessary 
to randomize the retransmission delays  in order to avoid 
perpetual  repetition of the collision. Extensive analysis of  the 
performance of this protocol  for centralized, jidly connected 
networks can be found in [l] , [lo], where it is determined 
that  the maximum that  the channel can be utilized is 18 per- 
cent (1 /2e) of the channel bandwidth.  A simple modification to 
the ALOHA scheme-slotted ALOHA, proposed in [ l l ]  - 
forces transmission to commence at  the beginning of “slots” 
(time divisions of length equal to a packet transmission time).  In 
[ lo]  , [13] we frnd  analysis of this scheme showing that  the 
capacity is doubled (over unslotted ALOHA), to  36 percent 
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( l / e ) .  These studies were concerned with centralized networks 
since local access networks,  for which these protocols were 
initially designed, usually have centralized traffic requirements 
(the central node  often being a gateway to the main network). 

If the size ,sf the  network increases it may no longer be 
possible to have  all nodes within range of  one  another. Re- 
peaters must be used and we are faced with a new set of (more 
difficult) problems. In [ 4 ]  , [ 1 5 ]  we fmd some capacity results 
for two-hop  slotted ALOHA centralized nets. 

In more recent developments such as the PRnet mentioned 
above, we no longer  have a central node  and we are thus faced 
with  the problem of multihop networks similar to  the tradi- 
tional line networks such as the ARPAnet, except that  a 
broadcast medium is  used for transmissions. This greatly 
complicates the work of the performance analyst and rela- 
tively little work has been done in this area. In [ 8 ]  , [14]  we 
considered some simple models of multihop networks with 
random structure  and found that using a small  average  degree 
(number of nodes within range of a  transmitter) is beneficial. 
We also noted  that  the effects of routing and flow control 
were important in these networks. In this paper we consider 
the simpler case of regular structures in more detail and are 
able to gain further insight into  the routing problem. 

In this paper we will  be looking at  multihop networks with 
a regular structure (i.e., in which the nodes are  regularly  placed 
on a square grid, for example), where  messages are forwarded 
from node to node following a  path defined by  the routing 
matrix. These networks are much easier to analyze than  the 
random networks discussed in [8 ]  since the topology is fixed 
and  the progress that can  be made toward the destination in 
any  hop is not dependent on any probabilistic argument. 

We start by looking at one-dimensional networks. Loop 
networks, as  discussed in Section 11, are  really one-dimensional 
line networks wrapped around a circle with the ends joined 
together. In Section 111 we look  at networks generated on the 
line (i.e., no joining of the ends). We follow this with a discus- 
sion of two-dimensional regular networks, such as the square 
lattice. 

The traffic matrix  that we  use  is uniform, i.e., each node 
splits its  traffic equally between all  possible destinations. With 
this traffic matrix and the uniformity of  the  topology, we 
initially assume that  the  traffic load on all links of the  net- 
work is homogeneous. This seems to be a valid assumption for 
any reasonable routing algorithm in loop networks, since there 
are no edge effects to consider. In two-dimensional networks 
we neglect  edge effects as they are of minor importance rela- 
tive to the rest of  the network (the perimeter of the  network 
will contain O ( 6 )  nodes). We then  study  the effect of rout- 
ing in the grid network in more detail. 

11. LOOP  NETWORKS 

The networks considered in this section consist of n points 
uniformly (regularly) distributed around the circumference of 
a circle. Fig. 1 shows a typical loop  network, consisting of 
eight nodes and average  degree of 5 (each node can communi- 
cate with its  two neighbors on either side plus itself). Each 
node in the network is identical in terms of traffic handled, 
degree, and so on. We can therefore compute  the expected 

.. - 

Fig. 1. Regular loop network. 

number of successful transmissions per slot for  the whole 
network (s,,~) to be n times the probability of success for any 
particular node si. In a heavy traffic situation, i.e., in which all 
nodes always  have a packet to be transmitted, the probability 
of successful transmission is identical to the local throughput 
that can be achieved by  that  node. For a homogeneous net- 
work and traffic matrix, we can  divide the local throughput 
(summed  over  all nodes) by the average path length to obtain 
the  end-toend throughput. We consider this heavy traffic 
throughput to be the  network capacity. 

A .  Network Success Rate 

We start,  therefore, by determining the expected number of 
successful transmissions per slot for  an arbitrary node (i) in the 
network. Let N denote  the degree of any  node in the  network 
(i.e., the number of neighbors plus the  node itself). We will  use 
the  term “one-hop throughput” to mean the rate at which any 
individual node can  successfully transmit packets to the next 
node along the  path to the destination. If  we let si denote  the 
probability of  a successful transmission in any slot by  node i 
(one-hop throughput)  then 

Si = Pr {node i successfully transmits} 

= Pr {node i transmits and  no node in range of the 
destination does} 

=p(1 --p>N-’ (1)  

where p is the probability that  a  node transmits in any slot. 
Since all nodes carry the same traffic and have the same 
degree, we  give every node the same transmission probability. 
In heavy traffic (nodes are  always busy), we can  describe the 
behavior of  a node in terms of this transmission probability, 
which corresponds to the offered traffic randomized to avoid 
repeated collisions. In order to find the  optimum value for  this 
transmission probability we differentiate 

- L ( l  ds .  -p>N-’ - ( N - l ) p ( l  -p>N-* 

dP 

Equating this to zero for  optimality  and excluding the case of 
p = 1 which corresponds to a minimum with zero throughput, 

2.- .’ ’ -  , .  
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we find  that 

1 

p* =N’  
This is the same as found  for fully connected networks in 
[ l ]  , as expected. We drop  the asterisk and use p to represent 
the optimum value for  the rest of this analysis. Rewriting the 
expression for success probability, we have 

From this we can obtain  the expected number of successful 
transmissions per slot for  the whole network snet: 

This represents the expected number of successful packets 
received per slot for the whole network.  It does not corre- 
spond to the  throughput since a  multihop  path will require 
many transmissions and we are counting each hop in this 
expression as a  contribution to the  throughput. When the 
network is fully connected (N = n) ,  we see that this reduces 
to  the usual throughput value of l / e  (path lengths all  being 
one  in this case). 

B. Path Length 

In order to compute  the  network  throughput y, we must 
divide snet by  the expected path length in hops 1. In order to 
find the average path  length, we split the  network into groups 
such that all the members of one group are equidistant (in 
hops)  from  a given (typical) node. Thus, the first group will 
be those  with whom a  node can directly communicate, the 
second group will be those that are two  hops away, and so 
on. Each group will  have the same number of members, N -  1 ,  
except possibly for  the last group which will  have the re- 
mainder if (n - l)/(N - 1 )  is not an integer. Let g represent 
the number of complete (not counting this remainder) groups; 
then 

where 1x1 is the largest integer less than  or equal to x .  There 
are (n - 1) - (N - 1)g nodes in the last partial group, with 
path length g + 1 .  This group is taken care of by the second 
term in the following expression for 1. 

- 1  Z = - ( ( N - l ) ~ i + k + l ) [ ( n - l ) - g ( N - l ) ~  g 

n - 1  i= 1 

Recalling the example of Fig. 1, we find  the number of com- 
plete groups is 

and  the average path length is 

If there are no nodes in the special extra  group, which is to 
say that there is no remainder in the division of n - 1 by 
N - 1, this reduces to the following “clean” expression for 1. 

- n + N - 2  
I =  

2N-2 

This will also be a good approximation for 5 when the  total 
number of nodes is  large compared to the number in  the last 
group, more precisely, when 

( N -  1)g 
%- (n - 1 )  - g (N-  1). 

2 

C. Throughput 

For networks where (10) applies, we compute  the  network 
throughput y (as the  network success rate divided by  the aver- 
age path length) to be 

y = -  % e t  

1 

Let  us evaluate this expression for  two interesting cases, 
1) when N = n (i.e., a fully connected net),  and 2) when N = 3 
(i.e., each node is connected only to his immediate neighbors). 
We notice that  the average path length for  the fully connected 
case  is 1, and (n + 1)/4 when each node is connected only to 
his neighbors. We denote  the  throughput  for  a  network  with 
N = j b y y i .  

D. Fully Connected Network 
For the fully connected network we have 

y n =  (it) * 

n- 1 

Taking the limit for large n ,  we find 

We are not surprised to see that for large n we achieve a 
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throughput which corresponds to  the usual infinite ALOHA 
population. 

E, Neighbor Communication 
Considering the  other  extreme where each  node is only  con- 

nected to its  two  neighbors, we find (for the case  where (10) 
is valid) 

3 

2 * 
- 0.7 

, I  I 1 I - 

0.6 - - 

0.5 - 

Y 0.4; t- ~ \ : -  n =25 "=lo0 n =A00 n :PO0 

0.3 - 

1 6n 
27(n + 1 )  

- - ( 1  5 )  o . 2 _ _  0.1 3 5  10 30 100 400 900 

For  a large net the throughput for the neighbor  case is 
therefore 16/27, which  is greater than l / e .  It  may be that  the 
maximum for y is  achieved for an intermediate value. We After Some we find 
therefore proceed to investigate the behavior  of (12) for 
intermediate values of N in order to determine  that value - -+o ( ; )  +.(;) = l .  
of n which  maximizes the  throughput. 

Fig. 2. Throughput versus  average degree. 

2 N 2  
(21) 

F. Optimal Average  Degree 

Recall the throughput expression for y~ (neglecting the last 
group): 

Differentiating (1 6) with respect to N ,  we  have 

(3. -- - 
dN (n + N - 2)* 

- [-1 +(n+N--Z)( i+log   N-1  (y))]. N -  1 

( 1  7 )  

To find the optimal N ,  we must solve the  equation 

( n + N - 2 ) (  L+log (7)) N - 1  - 1  = o .  ( 1  8) 
N - 1  

Rewriting, we have 

N - 1   = n + N - 2 + ( N - l ) ( n + N - 2 ) l o g  

(1 9)  

Since N > 1 ,  we can expand  the log to obtain 

In order for this equation to balance for large n, assuming 
negLgible o ( l / N ) ,  etc., we have 

The  second factor of the  equation for y (i.e., ((N - 1)/ w) will  vary from 8/27 (for N = 3) to l / e  (for large N ) .  For 
large n,  the first term is equal to 2,  provided that N grows at a 
slower rate than n. We found above that  at  the  optimum, N 
must  be  on the order  of @. For such a value  of N ,  the 
throughput will  be  given by 21e. In fact,  the  exact value  of 
N is not critical as long as it is greater than 3 and grows  slower 
than n. We see, therefore,  that  the maximum throughput is 
2/e and will be achieved for any  moderate value of N .  In  Fig. 2 
we plot  the  throughput as a  function of the average  degree, 
as  given by (16), and see that  the  predicted behavior  is indeed 
achieved. 

111. LINE  NETWORKS 

Another  one-dimensional  network of interest is the line 
network, where nodes are regularly  placed  along a line (this 
might  correspond to  a network in linear countries such  as 
Chile).  In order to avoid the edge effects that occur at  the ends 
of  a line network, we either consider  an infinitely long net- 
work  (with locality in the traffic requirements so that  the cen- 
tral  nodes  do not become  overloaded)  or the central section in 
a finite network (which  will  be the  most heavily loaded  and, 
thus,  determines the maximum  network  throughput).  For 
these two cases our  homogeneity  assumption that each  node 
uses the same transmission probability is reasonable and  the 
successful transmission rate for the  network, as before, is  given 
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In order to implement locality for  the infinite network, we 
can fix  the average path length (in hops), or the distance 
traveled (in nodes passed over). If  we fix  the distance traveled 
to  be k nodes, say,  then  the average path length in hops is 
given by 

The network  throughput is therefore 

N -  1 

2k 

provided that  2k/N is a valid approximation  for  the ceiling 
function  of  (24) (i.e., N Q k  or  k is exactly divisible by N ) .  
We note  that  the network  throughput is relatively insensitive 
to  the average degree, since (1 - 1/w- only varies from 
419 to l / e .  

If  we consider a traffic matrix which causes the average 
number of  hops to be a  function of n (a uniform traffic 
matrix,  for example), then  the throughput is  given by 

y = c  (1 -;) N -  1 

where c is some constant, depending on  the specific traffic 
requirement. The  important result here is that  the throughput 
is independent of  the average degree, provided that  the average 
degree  is  smaller than  the number of hops that messages take. 

This result agrees with that found in [2] , in which Akavia 
finds that in order to minimize delay, the node should use as 
large a range  as  necessary to reach the destination  independent 
of the traffic  load. 

IV. TWO DIMENSIONS 

In  this section we proceed to consider two-dimensional net- 
works. We first look  at  networks on the surface of  a sphere 
(to avoid the edge effect problem). These correspond to loop 
networks in one dimension. We then consider a Manhattan 
(square grid) network, which is the two-dimensional equivalent 
of  the line network considered earlier. 

A. Path Length 
The one-hop  throughput  for  a two-dimensional regular net- 

work superimposed on a sphere to avoid  edge effects (i.e., this 
corresponds to the  loop  network in one dimension) with fured 
degree N will be  the same as for  the one-dimensional case. 

The path length for  a uniform traffic matrix will now be 
proportional to the square root of the number of nodes, 
rather  than  proportional to the number of nodes, as we found 
for one-dimensional networks. (In [8], we  give a detailed 

Fig. 3. A square grid network. 

derivation of this relationship for random networks; a similar 
result applies for regular networks  with  a  different  constant of 
proportionality. The specific constant will depend on  the 
exact topology; see [2]  for several topologies or the  next sec- 
tion  for  a square grid network. The reason that  the  path length 
is proportional to the square root of the number of nodes and 
the degree is that  the distance is a linear measure, whereas 
number of nodes is a  function of the area.) 

- dn 

where c is some constant depending on  the network  topology. 
The throughput will be 

where d is another  constant depending on  the topology. The 
implication of  this is that we should let N become as  small  as 
possible, since both mN and (1 - (l/N)Y- increase as N 
decreases. The minimum value that N can take is 4 for  a  hex- 
agonal tesselation (a three-connected  net). For small  degrees 
(N = 4 or S), we must evaluate the  proportionality  constant 
(d). In [2] , Akavia makes this comparison and  finds that  the 
optimum network is the hexagonal tesselation mentioned 
above. 

B. Manhattan Nets 

We now consider networks embedded in the plane. In 
particular, we consider the Manhattan (square grid) network 
in more detail. Fig. 3 shows a sample Manhattan network  for 
N = 5 and n = 49. The distance metric for  this  network is the 
sum of the differences inx   andy coordinates (i.e.,  we can only 
move  parallel to the  x  or y axes). 

Consider two points (x1, y l )  and (xz, yz)  randomly lo- 
cated  in  the unit square. The Manhattan distance between 
these points is Ixl -xz I +'Iyl  - y z  I. Since lxl -x2 I and 
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Fig. 4. A 2 X 2 grid  network. 
f .,:. 

,:x?\ 

I y 1  - y 2  I are identically distributed independent random . 
variables, the expected vdue of the distance is d = 2E[x1 - 
xz] ,  where x1 and x2 are uniformly distributed over [0, I ] .  

Fig. 5. A 3 x 3 grid  network. 

Thus 

- 2  
-5' (30) 

In the Appendix we derive a similar result for  a discrete 
network  and show that  the average path length in an m X m 
square network is 

- 
1 = $ m .  (31) 

Assuming that edge effects can be neglected and  that  traffic 
flows are homogeneous, i.e., that each node carries the same 
traffic load (whether this is achievable is discussed below), 
we have  as before (replacing n by m2) 

m2 3 
y = - (1 - "4- 

5 2m 

= 0.123m. (3 2) 

Our first assumption, that edge effects can  be neglected, 
is  similar to that  for line networks, i.e., we either consider an 
infinite network with some locality of traffic or  the center of 
a large network. The second asSumption is harder to justify, 
since it is not at all clear how to route traffic in order to 
achieve a balanced load. Let  us consider a simple routing 
procedure. For a uniform traffic matrix we need to specify 
routes  for all pairs of points. It is straightforward to determine 
the  routes  for  a 2 X 2 network, For a  traffic  pattern requiring 
one unit of traffic between each pair of nodes, the resulting 
flows for  the network of Fig. 4 would be 

31m-3)h  

. I &.. ... -.&) 

\o 2 2 o /  
by using the following routing (rii = k means that traffic 
destined to j arriving at i is forwarded to k): 

- 2 3 2  

R = k  4 f. i). 
3 2 3  

F =  

(34) 

We can now decompose a larger m X m network  into 2 X 2 
squares to find the routes. We define a subsquare to be a set of 

Fig. 6. Flows for an m X m network. 

We use the routing found  for  the 2 X 2 square for each of the 
subsquares, which are( 1 , 2 , 4 , 5 ) ;  (2,3,5,6); ( 4 , 5 , 7 , 8 ) ;  (5,6, 
8, 9); (1,  2, 7,  8); '(2, 3 ,   8 ,  9); ( 1 , 4 , 3 ,  6); (4,6, 7,9);  and 
(1 ,3 ,7 ,9 ) .  

Routing for  the first subsquare, (1, 2, 4, 5), produces two 
units  of flow in  each direction on  the links (1, 2),; (1, 4), 
(2, 5), and (4, 5). Similarly, the second subsquare, (2 ,3 ,5 ,6 ) ,  
would produce two units of flow on  the links (2, 3), (2, 5), 
(5, 6) ,  and (3, 6). Since we  have already routed  the traffic 
between 2 arld 5, however, only one unit of flow is generated 
on the link (2, 5). The resulting flow is then  two units on 
(1, 2), (1, 4), (4, 5), (2, 3), (3, 6), (5, 6) and  three  units on 
(2, 5). (Note: we have described this process for  the link 
(1 ,  2), etc., but  the same comments apply to the  link (2,  l).) 
This procedure is repeated for the rest of the subsquares 

' 0 6 0 6 0 0  O O O \  

6 0 6 0 6 0  0 0 0  

0 6 0 0 0 6 0 ~ 0  

6 0 0 0 6 0   6 0 0  

0 6 0 6 0 6   0 6 0  

0 0 6 0 6 0   0 0 6  

0 0 0 6 0 0   0 6 0  

0 0 0 0 6 0   6 0 6  

0 0 0 0 0 6   0 6 0 /  

four nodes on the  comers of a rectangle: Thus, in  Fig. 5, Using this procedure we find  that  the flows for  an m X m net- 
(1 ,  3, 7 ,  9) constitute  a subsquare, whereas ( 1 , 2 , 8 , 3 )  do  not. work are as shown in Fig. 6, where the flows shown are in 

. ~ .. . : , I  
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each direction on  the associated link. Note that for our ex- 1.2 I I I 1 

amples (four and nine nodes), the flows on all  links  were 
equal, whereas in general this is not  true. To check that this 1.0 - 
procedure generates shortest path  routes, we sum the  total 
flow in this network. We call this total  flow h. Note that  the 0.8 - 
number of links carrying a flow i(m - i)m is 4m, each direc- 
tion  on  the m links in the  ith column and ith row. 

Y 
m - 1  - 

SIMULATION ( N = 5 )  
m - 1  m - 1  SIMULATION (N.9)  

i= 1 i= 1 n 

The  total  traffic carried, y, is 

(3 5) 

Fig. 7 .  Throughput  for  two-dimensional  regular  networks. 

succeeds to a particular neighbor, s/4, is 

S - = 1 1. (1 - 9 4  
4 4 5  

0.08 192 =--- 
4 

y = m2(m2 - 1). (3 6 )  
Therefore, since the success rate must exceed the flow require- 

Using a well-known result for  the average path length [7] , ment, we have 
we find 

This checks with  our previous result and,  thus,  the  paths gen- 
erated by our procedure are indeed shortest paths. 

It should be clear that  the flows so produced are  as  well 
balanced as possible, i.e., any other flow pattern Will have a 
higher maximum link  flow. The most heavily congested node 
is the one in the center of  the  network, which carries a flow of 
m3/4 on each of its outgoing links. For each of these links 
we  have that  the success rate must exceed the required flow 
rate. For a  total  network  traffic of y, the flows on these links 
are 

my 0.08192 
(37) 4(m2 - 1 )  

< -. 
4 

Since the nodes surrounding the center node carry approxi- 
mately the same load,  it is reasonable to assume, that  they all 
use the same transmission probability p and  that p = 1/5 will 
give the best performance. The probability of success for  this 
node is 

s = p ( l - p ) " .  (3 9) 

Setting p = 1/5, we have that  the rate at which this  node 

Calling the maximum throughput  or  network capacity y*, and 
noting that  the number of nodes in the  network, n,  is equal 
to m 2 ,  we have 

Y* = 0.08192 - n-1  

6 
% 0.08  192 fi (for large n). (42) 

In Fig. 7, we plot  this expression (42) and  the  one given by 
(32), which assumes that  the flow on all links in the  network 
is equal. We also plot some simulation data in which the  path 
between a pair of nodes was selected by randomly choosing 
among the set of possible shortest paths. This approach 
results in less balanced flows. Since the flows so produced 
are unbalanced, the transmission probabilities are no longer 
simply 1/5, but determined by  the ratio of the  total flow of 
this node over the flow in the  destination environment. 

We see that  the simulation data fall between the  two 
models but, indeed, grow proportional  to  the square root of 
the network size. This leads us to  the interesting conclusion 
that balancing the flows on links in broadcast networks is not 
the best thing to do (as it was in traditional networks). This 
derives from two factors. First, we should attempt to balance 
total nodal traffic rates rather than link flows. If  we  were able 
to do so (and not affect the average path length), the  per- 
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forrnance would  be  as predicted  by (32). We were  unable to The mean distance  is  given by 
devise an  algorithm that accomplished  this, however. Second, 
even  balanced nodal  flows are not really appropriate since ,qd] 
when we  have a large  user in an  ALOHA network the maxi- 
mum  throughput is greater than if  all  users  are equally  loaded. 1 1 
This fact makes determination of optimal routes for these 7 lil  - i 2  I + lil -i2 I 
broadcast  networks  much  more difficult than in traditional 

m m  

l i Z Z 1  j -  2 -  - 1  

networks where the link capacity is not  a  function  of  the  load. m m m  

higher  degree N = 9. We note  that  the  capacity has  been j 1 ’ = 1  j 2 = 1  

significantly reduced for this case. 

We also plot  a single data  point  for  a grid network  with  a 

2 -- - 5 5 1 i 1  - i 2 1  
V. CONCLUSIONS m2 - 1 i l = l  i 2 = 1  

lil - i 2  I 

In this paper we  were concerned  with  the  capacity of 
broadcast  slotted ALOHA networks  with regular structure. We -z m2 -1 i l = l  e( i 2 = l  2 (il - i 2 ) +  (i2 - i l l  
were interested in  determining  whether we could benefit from 
spatial reuse. We investigated the effect of the average  degree 
on  network  performance  and also determined  optimal trans- -2 - 2 { i 1 2 -  +-- il(il + 1) m(m + 1) 

mission  policies.  In particular we found  the following. m2 - 1 i l z l  2 2 
1)  For  one-dimensional  networks  the  throughput is (al- 

most)  independent of the degree and  a  capacity of c/e can be __ i,.(il + 1) 
achieved,  with  the  constant c depending  on the form  of the 
traffic matrix. 

m 
- 

i 2 = i l +  1 I 

- (m -il)il 
2 I 

2) For  loop  networks  the  capacity is 2/e for average  degrees 1 m 
of the  order of the square root of the number  of  nodes in the 
network. 

allows a  capacity  proportional to  the square  root of the num- 
ber  of nodes  in the network to be achieved for small  average E [ d ]  = $ m. (A31 

- - E l  

3) For  two-dimensional  networks we find that spatial reuse which, after some  algebraic manipulation, gives 

degrees. 
4) The intuitive routing of  balancing link flows was shown 

to be  nonoptimal  for  a  broadcast grid network. 
This last finding has  an impact on  the optimal  routes for 

broadcast  networks in a  more general sense. We can no longer 
expect the traditional optimal  routing  algorithms  such as the 
flow deviation algorithm [3] to apply, since link capacity is 
now  a  function of the carried load (and  of the load carried on 
neighboring links). 

The  most  important result  of this paper  is that spatial re- 
use  is indeed beneficial for these regularly structured  broad- 
cast networks  and that low connectivity is a desirable quality 
for increasing capacity. This  result  is  similar to  that predicted 
for  random  networks in [8]. In the light of the importance of 
the nonuniformity of traffic flows as  discussed here,  a  more 
detailed model of random  networks is warranted. 

APPENDIX 

AVERAGE  PATH  LENGTH IN A SQUARE 
GRID NETWORK 

Consider two points (il , jl) and ( i2 ,  j 2 )  in an m X m square 
network  with  Manhattan  norm. Then the distance between 
these points is  given  by 

d = l i l - i 2 1 + l j l - j 2 1  l < i l , i 2 , j l , j 2 < m .  (Al) 
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